Left–right crossings in the Miller–Abrahams random resistor network and in generalized Boolean models

نویسندگان

چکیده

We consider random graphs G built on a homogeneous Poisson point process Rd, d≥2, with points x marked by i.i.d. variables Ex. Fixed symmetric function h(⋅,⋅), the vertexes of are given process, while edges pairs {x,y} x≠y and |x−y|≤h(Ex,Ey). call h-generalized Boolean model, as one recovers standard model taking h(a,b)≔a+b Ex≥0. Under general conditions, we show that in supercritical phase maximal number vertex-disjoint left–right crossings box size n is lower bounded Cnd−1 apart from an event exponentially small probability. As special applications, when marks non-negative, its generalization to h(a,b)=(a+b)γ γ>0, weight-dependent connection models max-kernel min-kernel graph obtained Miller–Abrahams resistor network which only filaments conductivity fixed positive constant kept.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation Models and Fitting Them for the Boolean Random Sets

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

Random Boolean network models and the yeast transcriptional network.

The recently measured yeast transcriptional network is analyzed in terms of simplified Boolean network models, with the aim of determining feasible rule structures, given the requirement of stable solutions of the generated Boolean networks. We find that, for ensembles of generated models, those with canalyzing Boolean rules are remarkably stable, whereas those with random Boolean rules are onl...

متن کامل

propagation models and fitting them for the boolean random sets

in order to study the relationship between random boolean sets and some explanatory variables, this paper introduces a propagation model. this model can be applied when corresponding poisson process of the boolean model is related to explanatory variables and the random grains are not affected by these variables. an approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

Multifractal properties of the random resistor network

We study the multifractal spectrum of the current in the two-dimensional random resistor network at the percolation threshold. We consider two ways of applying the voltage difference: (i) two parallel bars, and (ii) two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves for small i as P(i) approximately 1/i, where i is the current. As a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2021

ISSN: ['1879-209X', '0304-4149']

DOI: https://doi.org/10.1016/j.spa.2021.03.001